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Adaptive Statistical Bayesian MMSE Channel
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Abstract— Visible light communication (VLC) is considered to
be one of the promising technologies for future wireless systems
and has attracted an increasing number of research interests in
recent years. Optical orthogonal frequency division multiplexing
(O-OFDM) has been proposed for VLC systems to eliminate the
multi-path interference, while also facilitating frequency domain
equalisation (FDE). In comparison with the conventional radio
frequency (RF) based wireless communications, there has been
limited considerations on channel estimation for VLC, where the
indoor optical wireless channel model differs from the traditional
RF case. In this paper, we present a new channel estimation
(CE) algorithm for indoor downlink (DL) VLC systems, referred
to as the adaptive statistical Bayesian minimum mean square
error channel estimation (AS-BMMSE-CE). Furthermore, a so-
called variable statistic window (VSW) mechanism is designed
for exploiting past channel information within a window of
adaptively optimised size, such that the CE performance can be
significantly improved. Detailed theoretical analysis is provided
and verified by extensive numerical results, demonstrating the
superior performance of the proposed AS-BMMSE-CE scheme.

Index Terms— Bayesian estimation, channel estimation, vari-
able statistic window (VSW), visible light communication (VLC).

I. INTRODUCTION

IN recent years, visible light communication (VLC) [1]
has emerged as a promising technology for complementing

conventional radio frequency (RF) based wireless communica-
tion systems. In comparison to the RF scenario, there has been
limited considerations on channel estimation (CE) for VLC.
The principles of conventional CE technologies, for example
the pilot-aided channel estimation (PACE) schemes [2], [3],
may also be applicable to VLC scenarios. Depending on the
domain where the estimators operate, we have frequency-
domain (FD) or time-domain (TD) based CEs. Conventional
FD CEs employ methods such as minimum mean square
error (MMSE) [2], [3], genetic algorithm (GA) [4], adaptive
polar linear interpolation (APLI) [5], etc., which either assume
ideal conditions or suffer from notable residual error floors.
On the other hand, TD CEs [6]–[8] utilise channel impulse
response (CIR) for estimating channel state information (CSI)
by invoking MMSE, recursive least squares (RLS) [9] or other
algorithms [7], [10]. Nonetheless, they often rely on specific
a priori information that may not be available in practical
systems, or on parameters for example forgetting factors with
fixed values, which therefore may not adapt to CSI variations.
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Furthermore, the indoor channel for VLC [11], [12] is
different from the traditional wireless radio channels. Due to
the intensity modulation/direct detection (IM/DD) mechanism
invoked by VLC systems, the transmitted optical signal has
non-negative real values and so does the CIR. Additionally,
another significant difference between the RF and VLC chan-
nels resides in their time-varying characteristics. In a typical
indoor VLC system, when the user moves around within the
VLC environment, the variation of the channel taps’ envelopes
and the path delay no longer obey the traditional Doppler
spectrum [11], [12]. Moreover, compared with the sparse taps
of many popular RF channel models, the taps of VLC channels
are denser due to many reflections from the walls and the
ceiling, thus resulting in specific design constraints from the
CE perspective. In this case, algorithms designed for channels
with sparsity characteristics, for example the technique of [13],
may not be suitable for CE in VLC systems. Therefore,
although some of the traditional CE algorithms might still be
directly applicable, only those tailored for VLC scenarios may
become optimum solutions.

Inspired by the CEs designed for RF channels, some CEs for
optical channels [14]–[16] have been developed, where max-
imum likelihood sequence detection (MLSD) [17] is adopted
for mitigating inter-symbol interference (ISI). In [18], the au-
thors propose the implementation of linear decision feedback
and artificial neural network (ANN) based equalisation for
VLC, where equalisers are performed in real-time, though at
the cost of increased complexity. As ISI can be effectively
eliminated with the aid of orthogonal frequency division
multiplexing (OFDM), which also has other merits and has
been adopted by many modern wireless standards such as the
long-term evolution (LTE), it has been suggested to extend
OFDM to the VLC domain for supporting ISI-free high-rate
transmissions [19]–[22]. Nonetheless, only recently, a few
CEs were introduced for OFDM-aided VLC systems [23]–
[25], where the authors tended to simply reuse traditional
CE schemes originally proposed for RF OFDM. Furthermore,
these schemes only consider simple channel models rather than
the more sophisticated ones [11], [12].

Against this background, in this paper we propose a new
CE scheme for optical OFDM (O-OFDM) aided VLC systems,
which is capable of achieving a superior CE performance in
terms of both mean square error (MSE) and bit error rate
(BER) at a modest computational complexity. The novelty of
this work mainly includes:

1) A new CE scheme referred to as adaptive statistical
Bayesian minimum mean square error channel estima-
tion (AS-BMMSE-CE) is designed. It exploits a so-
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called variable statistic window (VSW) with a theoreti-
cally optimised size. Furthermore, the proposed per-tap
optimisation process is suitable for the VLC channel,
which is constituted by dense taps that have different
statistical characteristics, thus provides high robustness
and stability in terms of CE performance.

2) Comprehensive theoretical derivations are provided to
prove that the upper MSE bound of AS-BMMSE-CE
is lower than the Cramér-Rao lower bound (CRLB),
and that the lower MSE bound of AS-BMMSE-CE
may also be lower than the traditional Bayesian lower
bound (TBLB) [7], [26] under some circumstances.
Particularly, to cope with O-OFDM and the real-valued
VLC channel, most derivations are developed in the real
domain, which is different from the RF scenario, where
derivations are based on complex numbers.

3) New algorithms called covariance coefficient update
algorithm (CCUA) and covariance matrix update algo-
rithm (CMUA), are designed based on a theoretically
optimised pilot pattern exploiting the O-OFDM proper-
ties in the real domain. They together help to reduce the
computational complexity of AS-BMMSE-CE.

The organisation of this paper is as follows. The sys-
tem model is briefly reviewed in Section II, followed by
an overview of the proposed VSW-aided AS-BMMSE-CE
scheme in Section III. The details of AS-BMMSE-CE are
provided in Section IV, where various design aspects including
a complexity reduction option are discussed. Simulation results
are offered and analysed in Section V, before we finally
conclude our findings in Section VI.

Notations: Bold variables denote matrices or vectors; Tr{·}
stands for the trace operation; (·)T and (·)H refer to the
transpose and Hermitian transpose operations, respectively;
(·)∗ is the conjugation of (·); [·]i and [·]i,j indicate the selection
of the ith element of a vector and the (i, j)th element of a
matrix, respectively; E{·} is the expectation operation; D{·}
is the variance operation; IL denotes an L×L identity matrix;
diag{·} declares a diagonal matrix; and (̂·) defines the estimate
of the variable concerned.

II. SYSTEM MODEL

As an example, we consider a general VLC system based
on direct-current-biased optical OFDM (DCO-OFDM) [22], as
shown in Fig. 1 [27]. However, it is also worth pointing out
that other popular optical OFDM (O-OFDM) schemes are also
applicable with minimum modifications. For simplicity, we
assume that the environmental conditions, such as for example
ambient light, reflective objects, etc. remain the same in the
room. Under this assumption, the indoor VLC channel may be
viewed as position-varying rather than time-varying, implying
that it fluctuates in the space domain when the user equipment
(UE) moves around in the room. Moreover, it is a slow-varying
case due to the low mobility of the UE.

Define the subcarrier indices of pilot symbols as a set
Ip = {P0 + i · Nd, i = 0, 1, . . . , Np/2 − 1}, where Nd is
the pilot interval, Np is the total number of pilots required
for one O-OFDM symbol and P0 is the smallest subcarrier
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Fig. 1. Schematic of a typical DCO-OFDM system.

index among all pilots. For the transmission towards the
UE at the nth position in the room, pilot symbols of the
same constant amplitude are multiplexed with data symbols
at an equal-distance of Nd to produce a FD signal vector
Xn =

[
X[n, 0], . . . , X[n,N − 1]

]T ∈ CN×1, where the sets
of pilot subcarrier indices and data subcarrier indices may
be expressed as Ppilot = {k|k ∈ Ip or N − k ∈ Ip} and
Pdata = {0, . . . , N − 1}\Ppilot [28], respectively, while N
is the size of inverse fast Fourier transform (IFFT) and C
denotes the set of complex numbers. Since IM-based optical
signals have non-negative real values, Xn is constrained to be
Hermitian symmetric as

X[n, k] = X∗[n,N − k] for 0 < k <
N

2
, (1)

where X[n, 0] = X[n,N/2] = 0. Then, after the serial-to-
parallel (S/P) and IFFT operations seen in Fig. 1, we have
a real vector xn = FIXn, where FI = {fn,k} ∈ CN×N ,
fn,k = 1

N e
j 2πnk

N for 0 ≤ {n, k} ≤ N − 1. The generated
electrical DCO-OFDM signal sn is then converted to its optical
version and transmitted in the VLC channel of a discrete form

hn =
[
h[n, 0], . . . , h[n,Lc − 1]

]T ∈ RLc×1+ , (2)

where Lc is the maximum number of CIR taps and R+ denotes
the set of positive real numbers.

In the electrical domain of the receiver, after cyclic prefix
(CP) removal, S/P conversion and fast Fourier transform
(FFT), the received FD signal Yn at the kth subcarrier is

Y [n, k] = H[n, k]X[n, k] +N [n, k], k = 0, . . . , N − 1, (3)

where H[n, k] is the channel transfer function (CTF), and
N [n, k] is the complex additive white Gaussian noise (AWGN)
with zero mean and variance σ2. Note, however that the VLC
system is affected by a few noise sources, typically including
the shot noise and the thermal noise. More specifically, the
variance of the combined TD noise, which can be approxi-
mated as AWGN, is denoted as [29], [30]

σ2
TD = σ2

Shot + σ2
Thermal, (4)

where σ2
Shot and σ2

Thermal respectively denote the variances of
the shot noise and the thermal noise formulated by [29]{

σ2
Shot = 2qR

[
PSignal(t) + PDaylight

]
σ2
Thermal = 4

r · kbBT
, (5)
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where q is the charge on electron, R is the responsivity of the
photo-detector (PD), PSignal(t) is the instantaneous received
power, PDaylight is the mean power received from the diffuse
sunlight in indoor environment, kb is the Boltzmann’s constant,
B is the bandwidth and T is the temperature of the noise
equivalent input resistance r. It is worth noting that although
the variance σ2

TD of the combined TD noise contains a TD
shot noise with a time-varying variance σ2

Shot, its equivalent
FD version can be approximated as an AWGN with a constant
variance of σ2 = 2qRN(PRx+PDaylight)+Nσ2

Thermal, where
PRx is the average optical receive power across the room.

Then, with the aid of the CE block in Fig. 1, the estimated
channel coefficients Ĥ[n, k] can be obtained. Briefly speaking,
the AS-BMMSE-CE scheme estimates the mean value of
the tap coefficient vector µ̂nh of length Lc, whose lth (l ∈
{0, . . . , Lc− 1}) element is the mean tap coefficient averaged
within an optimised statistic window size ωnl,opt, and n refers
to the UE’s current position. Similarly, the covariance matrix
of the CIR, denoted by the Lc × Lc matrix Cn

h, can also be
obtained through linearly smoothing its values corresponding
to the UE’s past and current positions within the predefined
maximal statistic window size ωmax. More details will be
revealed in Section III and Section IV.

III. VSW-AIDED AS-BMMSE-CE: AN OVERVIEW

The proposed VSW-aided AS-BMMSE-CE scheme is im-
plemented in the CE block seen in Fig. 1, while its flowchart is
portrayed in Fig. 2, where the variables are defined in relevant
contexts of the paper. We assume that a comb-type pilot pattern
with subcarrier indices defined by Ppilot is used, where the
specific pilot arrangement is provided in Section IV-C. The
least squares (LS) based CE is first invoked to obtain the CTF
estimates at the Np pilot subcarriers, yielding

Ĥ[n, k] =
Y [n, k]

X[n, k]
= H[n, k]+

X∗[n, k]

|X[n, k]|2
N [n, k], k ∈ Ppilot.

(6)
Next, the maximum likelihood estimation (MLE) [7] process
seen in Fig. 2 is used to get the estimated TD CIR vector,
namely ĥnML, which approaches the CRLB without a priori
knowledge on CIR [7], [26].

Based on ĥnML, a procedure referred to as CCUA, whose
details are to be revealed in Algorithm 1 of Section IV-D, is
invoked for achieving the covariance coefficient of the channel
taps. Then for the lth (l = 0, . . . , Lc − 1) tap, the results
generated by CCUA are used to determine the variation of
the coefficient as well as the associated variance, based on
which a comparison with ωmax is conducted. According to
the comparison result, we can decide whether an exhaustive
search over the candidate window sizes ωnl ∈ [1, ωmax] has
to be launched, for identifying the optimal VSW size ωnl,opt
associated with the lth tap. If such an exhaustive search is
needed, the proposed CMUA procedure described by Algo-
rithm 2 in Section IV-D will be activated, which facilitates
the construction of a covariance matrix to be exploited by the
following optimisation on the tap-specific VSW sizes. Then,
each tap’s most recent coefficients within the optimal VSW are
averaged. With the aid of the optimised means and variances
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Fig. 2. The flowchart of the proposed AS-BMMSE-CE scheme.

of the CIR coefficients, the conventional BMMSE-CE pro-
cedure [7] can be used, resulting in improved CIR estimates.
Finally, FD CTF estimates are obtained after applying N -point
FFT on the estimated CIR.

IV. DETAILED CE DESIGN

In this section, we will elaborate on the design of the
proposed AS-BMMSE-CE scheme illustrated in Fig. 2.

A. TD PACE Process

As indicated in Fig. 2, the MLE-aided TD CE function is
invoked to get the initial estimates of hn in (2), utilising the
LS-based channel estimates at pilot subcarriers. Assuming hn
is deterministic but unknown, the MLE-based CE is capable of
approaching the CRLB [7], [26]. To elaborate a little further,
first note that the FD CTF vector Hn can be calculated through

Hn = Bhn, (7)

where B = {Bk,l} ∈ CN×Lc , Bk,l = e−j
2πkl
N for 0 ≤ k ≤

N − 1, 0 ≤ l ≤ Lc− 1. We denote the FD noise after FFT as

Nn = Dnn ∈ CN×1, (8)

where nn is the TD real-valued electrical AWGN with zero
mean and covariance σ̄2IN , Nn is complex-valued AWGN
with zero mean and covariance σ2IN , and D = F−1I =

{Dn,k} ∈ CN×N , Dn,k = e−j
2πnk
N for 0 ≤ {n, k} ≤ N − 1.

Define Hn
P as the CTF vector corresponding to pilot sub-

carriers, formulated by

Hn
P = SHn, (9)
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where S is an Np ×N selecting matrix that helps to extract
the pilots’ indices. More specifically, the ith (i = 0, . . . , Np−
1) row of S is constituted by zeros except the ([Ppilot]i)

th

element, which has a value of 1. It implies that [S]i,[Ppilot]i = 1
and SSH = INp . We also define an Np × Lc matrix

WP = SB, (10)

where the elements of WP are [WP ]k,l =

e−
j2π·[Ppilot]k·l

N (0 ≤ k ≤ Np − 1, 0 ≤ l ≤ Lc − 1).
According to [7], [26], the MLE estimate of the CIR is

ĥnML = (WH
P WP )−1WH

P Ĥn
P , (11)

where Ĥn
P is the LS estimates of Hn

P in (9), formulated by

Ĥn
P = WPhn + %n

−1SNn = WPhn + Vn, (12)

where we define
Vn = %n

−1SNn, (13)

while %n = diag{p0, . . . , pNp−1} and pi is the ith (i =
0, . . . , Np − 1) pilot symbol. Without loss of generality, we
assume that pi = ±1, i = 0, . . . , Np − 1. Note that by using
pilot symbols with constant amplitude, each element in Vn is
AWGN with zero mean and variance σ2, yielding E{Vn} =
0Np×1 and E{VnVH

n } = E{%n−1SNnNH
n SH%n

−1H} =
σ2INp .

Different from the MLE-based CE that assumes no informa-
tion of hn, the so-called BMMSE estimator [7] assumes that
the mean value and the covariance matrix of the tap-specific
coefficients at the UE’s nth position, which are respectively
denoted by an Lc × 1 vector µnh and an Lc × Lc matrix Cn

h,
are known. The BMMSE version of the CIR estimate is [7]

ĥn = µnh + ΦnWH
P (Ĥn

P −WPµ
n
h), (14)

where we define Φn = [WH
P WP + σ2(Cn

h)−1]−1. Note that
the BMMSE estimates of (14) are more accurate than their
MLE counterparts of (11), thanks to the knowledge of µnh and
Cn

h. However, in practical VLC systems the values of µnh and
Cn

h are typically difficult to obtain or unavailable, thus greatly
restricting the applicability of the conventional BMMSE-CE
method. Hence, one key issue is that how to derive a method
for estimating these parameters in an efficient and robust way,
such that the practicality of BMMSE-CE for VLC systems can
be improved. We will show the solution to this issue in the
remaining sections.

B. VSW-based Optimisation

In this section, we show how µnh can be estimated, together
with the derivation of the objective function for our CE
problem. By inserting (12) into (14), we have

ĥn = µnh + ΦnWH
P (WPhn + Vn)−ΦnWH

P WPµ
n
h

= (ILc −ΦnWH
P WP )µnh + ΦnWH

P WPhn + ΦnWH
P Vn

= hn + εn,
(15)

where εn denotes the estimation error for the TD CIR and is
formulated by

εn = ΦnWH
P Vn − (ILc −ΦnWH

P WP )∆hn, (16)

where
∆hn = hn − µnh (17)

denotes the difference vector between the CIR hn and its
mean µnh at the UE’s nth position. Furthermore, (16) may
be rewritten as

εn = Ψn
1Vn −Ψn

2∆hn, (18)

where we define

Ψn
1 = ΦnWH

P , Ψn
2 = ILc −ΦnWH

P WP , (19)

Since µnh in (17) is not obtainable in practical systems, we may
instead use its a priori estimate µ̂nh, yielding the estimated CIR
difference

∆ĥn = hn − µ̂nh. (20)

Note that the VLC channel model [11], [12] usually contains
one light-of-sight (LOS) tap and a few higher-order reflec-
tive taps, where different taps may have different statistical
characteristics. Thus, in order to improve the accuracy of µ̂nh,
we propose the so-called VSW mechanism, which exploits
the tap-specific past channel information in a given statistic
window with an optimised size. In this scheme, each element
of µ̂nh is the tap coefficient averaged over the specific statistic
window size ωnl , l ∈ {0, . . . , Lc − 1}, formulated as

[µ̂nh]l =
1

ωnl

ωnl −1∑
k=0

[ĥn−kML ]l, l ∈ {0, . . . , Lc − 1}, (21)

where based on (11), the MLE-based estimate is given by [7]

ĥnML = (WH
P WP )−1WH

P Ĥn
P = hn + vn = µnh + ∆hn + vn,

(22)
while the superscript (·)n−k in (21) denotes the (n− k)th

position. Inserting (12) into (22), the equivalent TD noise vn
can be calculated as

vn = (WH
P WP )−1WH

P Ĥn
P − hn = (WH

P WP )−1WH
P Vn.

(23)
Utilising (21) and (22), we may further develop (20) as

[∆ĥn]l = [µnh]l + [∆hn]l −
1

ωnl

ωnl −1∑
k=0

([µn−kh ]l + [vn−k]l + [∆hn−k]l)

=
ωnl − 1

ωnl
[∆hn]l −

1

ωnl

ωnl −1∑
k=0

[vn−k]l −
1

ωnl

ωnl −1∑
k=1

[∆hn−k]l.

(24)
If we define the FD MSE associated with the kth subcarrier

at the UE’s nth position as γn(k) = E{|Ĥ[n, k]−H[n, k]|2},
then the MSE averaged over one OFDM symbol can be
denoted by Γn = 1

N

∑N−1
k=0 γ

n(k). Using (7), (15) and (18),
Γn may be transformed to

Γn =
1

N
Tr{E{(Ĥn −Hn)(Ĥn −Hn)H}}

=
1

N
Tr{E{[B(hn + εn)−Bhn][B(hn + εn)−Bhn]H}}

=Tr{E{εnεHn }}
= σ2Tr{Ψn

1ΨnH
1 }+ Tr{E{Ψn

2 ∆hn∆hHn ΨnH
2 }}

− Tr{E{Ψn
1Vn∆hHn ΨnH

2 }} − Tr{E{Ψn
2 ∆hnVH

n ΨnH
1 }},

(25)
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which constitutes the objective function of the proposed AS-
BMMSE-CE technique. Naturally, the estimated CIR differ-
ence denoted by (24) may be inserted into (25), forming a
function of ωnl , l ∈ {0, . . . , Lc − 1}. Hence in AS-BMMSE-
CE, we are interested in finding the optimum values ωnl,opt, l ∈
{0, . . . , Lc − 1} that minimise Γn of (25)

ωnl,opt = argmin
{ωnl }∈N+

Γn, l ∈ {0, . . . , Lc − 1}, (26)

where N+ denotes the set of positive integers.
Nonetheless, as the complicated expression of (25) involves

multiple coupled parameters, it may be difficult to solve (26)
directly. It is therefore desirable to simplify (25), as to be
discussed next.

C. Pilot Pattern and Covariance Matrices

Aiming to simplify (25), let us first cast a deeper insight
into it. Note that Ψn

1 and Ψn
2 in (25) contain a common term

of WH
P WP , where WP is defined in (10). Since WP is

related to the pilot index, it is beneficial to optimise the pilot
pattern such that WH

P WP becomes a diagonal matrix, which
then facilitates the simplification of (25). On the other hand,
as suggested by [6], the pilots should be equally spaced in
the FD to achieve the best CE performance and to achieve the
minimal CRLB [7], [26].

Furthermore, recall that in O-OFDM-aided VLC systems,
the transmitted data symbols are Hermitian symmetric with
respect to the (N/2)th subcarrier [22]. Thus, WP satisfies
the semi-orthogonality of

WH
P WP = NpILc , (27)

iff an uniform pilot interval of Nd is adopted and the pilot
subcarriers are symmetrically allocated with respect to the
(N/2)th subcarrier, too. In other words, the smallest pilot
index P0 should satisfy

P0+(
Np
2
−1)×Nd+Nd = N− [P0+(

Np
2
−1)×Nd], (28)

where we have Np ×Nd = N . Solving (28) yields

P0 = Nd/2. (29)

This is the unique optimised condition that P0 must fulfil for
O-OFDM-VLC systems subject to the above-mentioned design
target of (27). Based on (27) and (29), we transform (25) to

Γn = Tr{E{εnεHn }} = Θ(fnωnl ,l,C
n
h), l = 0, . . . , Lc − 1,

(30)
where Θ(fnωl,l,C

n
h) is a function of fnωnl ,l and Cn

h.
Let us now calculate the values of fnωnl ,l and Cn

h. More
specifically, fnωnl ,l represents the lth diagonal element of the
diagonal covariance matrix E{∆ĥn∆ĥHn }, and can be viewed
as a function

fnωn
l
,l(r

d
n,l) =

σ2

Npωnl
+

1

(ωnl )2

ωnl −1∑
j=1

ωnl −1∑
k=1

r
|j−k|
n,l +

(ωnl − 1)2

(ωnl )2
r0n,l

− 2 · ω
n
l − 1

(ωnl )2

ωnl −1∑
j=1

rjn,l, l = 0, . . . , Lc − 1,

(31)

where d = |j − k|, {j, k} = 0, . . . , ωnl − 1 and we define

rdn,l = r
|j−k|
n,l = E{([hn−j ]l − [µnh]l)([hn−k]l − [µnh]l)

∗},
(32)

while rjn,l in (31) is obtained by setting k = 0 in (32). The full
derivations of (30) and (31) are provided in Appendix I. Note
that rdn,l of (32) are the elements of the UE position covariance
matrix Rn,l associated with the lth tap at the nth position,
where Rn,l is a real symmetric Toeplitz matrix formulated by

Rn,l =


r0n,l r1n,l . . . rωmax−1

n,l

r1n,l r0n,l . . . rωmax−2
n,l

...
...

. . .
...

rωmax−1
n,l rωmax−2

n,l . . . r0n,l

 . (33)

According to [31], the estimate of rdn,l can be expressed as

r̂dn,l =
1

ωmax

ωmax−d−1∑
j=0

([ĥn−jML ]l− [µ̄n]l)([ĥ
n−(j+d)
ML ]l− [µ̄n]l),

(34)
where ĥ

(·)
ML is given by (22), and [µ̄n]l is the mean of the

lth tap’s coefficients, which is averaged over the maximal
statistic window utilising MLE as µ̄n = 1

ωmax

∑ωmax−1
k=0 ĥn−kML .

Moreover, ωmax ≥ ωnl , l ∈ {0, . . . , Lc − 1} is the maximum
length of the statistic windows, and its value should be
carefully selected. If it is too large, the accuracy of r̂dn,l may
be biased by more distanced and thus less relevant channel
information. In contrast, if it is too small, the result of r̂dn,l
may be dominated by residual noise which is not effectively
mitigated due to insufficient past channel information.

After obtaining µ̄n, we can use it to calculate (34) for
generating Rn,l defined in (33). Note that the MLE estimate,
namely ĥ

(·)
ML in (34), is contaminated by noise. We show in

Appendix I that the expectation of r̂dn,l in (34) contains TD
noise items of

E{r̂dn,l,noise} =

{
ωmax−1
ωmax

σ2
0 , d = 0

−ωmax−d
ωmax

· 1
ωmax

σ2
0 , d = 1, . . . , ωmax − 1

,

(35)
where σ2

0 = σ2

Np
is the TD residual noise variance under the

specific pilot pattern designed earlier in this section.
After replacing rdn,l in (31) with r̂dn,l in (34), we have

fnωnl ,l
(rdn,l) → f̂nωl,l(r̂

d
n,l). Utilising (35), we can therefore

obtain the expectation of the introduced noise item as

E{f̂nωn
l
,l,noise(r̂dn,l)} = −

2(ωnl )2 − 3ωnl (ω2
max + 1) + 3ω2

max + 1

3(ωnl )2ω2
max

σ2
0 ,

(36)
where more details can be found in Appendix I. Then, in order
to eliminate the impact from the noise specified by (36), we
may use

f̂nωnl ,l
′ = f̂nωnl ,l − E{f̂

n
ωnl ,l,noise

} (37)

to replace fnωnl ,l in (30) and (31).
Next, we proceed to calculate Cn

h specified in (30). Assum-
ing that the variations of coefficients associated with different
channel taps, which are represented by the elements of ∆hn,
are uncorrelated [7], we have

Cn
h = E{∆hn∆hHn } = diag{σ2

n,0, . . . , σ
2
n,Lc−1}, (38)
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where σ2
n,l (l = 0, . . . , Lc− 1) denote the variance of [∆hn]l

in (17) that corresponds to the lth tap at the UE’s nth position.
In order to obtain Cn

h, a forgetting factor λ is exploited to
calculate the estimate of σ2

n,l, namely σ̂2
n,l. More explicitly,

we define [32]

σ̄2
n,l = λσ̂2

n−1,l + (1− λ)(r̂0n,l −
ωmax − 1

ωmax
σ2
0). (39)

We will discuss how to select the value of λ in Section V.
Noting that σ̂2

n,l should be a positive value, we may apply a
small covariance constant σ2

const to (39), resulting in

σ̂2
n,l =

{
σ̄2
n,l, σ̄2

n,l > 0

σ2
const, σ̄2

n,l ≤ 0
, (40)

which is the estimate of the lth diagonal element of Cn
h.

Based on (37) and (40), we therefore simplify the objective
function (25) to (30) and (31), which involve a number of Lc
target variables to be optimised, namely the statistic window
sizes ωnl , l = 0, . . . , Lc− 1. More details on the optimisation
procedure will be provided in Section IV-E.

D. Considerations on Complexity Reduction

After the operations conducted in Section IV-C, we manage
to derive a simplified objective function (30). However, the
calculation of (34) and (37) requires a relatively high complex-
ity. For instance, a computational complexity of O(ω2

maxLc) is
required for thoroughly searching through d = 0, . . . , ωmax−1
and l = 0, . . . , Lc − 1 in (34). Such a complexity, however,
may be reduced by the algorithms proposed in this section.

Let us first expand (34) to

r̂dn,l =
φ̂n,dl,1 − (φ̂n,dl,2 + φ̂n,dl,3 )[µ̄n]l + (ωmax − d)[µ̄n]2l

ωmax
, (41)

where 
φ̂n,dl,1 =

∑ωmax−d−1
j=0 [ĥn−jML ]l[ĥ

n−(j+d)
ML ]l

φ̂n,dl,2 =
∑ωmax−d−1
j=0 [ĥn−jML ]l

φ̂n,dl,3 =
∑ωmax−d−1
j=0 [ĥ

n−(j+d)
ML ]l

, (42)

which may be further reformulated as
φ̂n,dl,1 = φ̂n−1,d

l,1 + [ĥn−dML ]l[ĥ
n
ML]l − [ĥn−ωmax

ML ]l[ĥ
n−ωmax+d
ML ]l

φ̂n,dl,2 = φ̂n−1,d
l,2 + [ĥnML]l − [ĥn−ωmax+d

ML ]l

φ̂n,dl,3 = φ̂n−1,d
l,3 + [ĥn−dML ]l − [ĥn−ωmax

ML ]l

.

(43)
Thanks to the recursive form of (43), the computational com-
plexity of (34) can be reduced to O(ωmaxLc). We summarised
the proposed covariance coefficient update algorithm (CCUA)
in Algorithm 1.

On the other hand, a computational complexity of O(ω3
max)

is imposed by (37) for fully testing ωnl = 1, . . . , ωmax for the
lth tap. We may expand (37) to

f̂nωnl ,l
′ =

σ2

Npωnl
+

1

ω2
i

ϕ̂n,1ωnl ,l
+

(ωnl − 1)2

(ωnl )2
r̂0n,l −

ωnl − 1

(ωnl )2
ϕ̂n,2ωnl ,l

+
2(ωnl )2 − 3ωnl (ω2

max + 1) + 3ω2
max + 1

3ωnl ω
2
max

σ2
0

,

(44)

Algorithm 1 Covariance Coefficient Update Algorithm (C-
CUA)

1: Initialisation: Obtain φ̂n−1,d
l,1 , φ̂n−1,d

l,2 , φ̂n−1,d
l,3 , µ̄n−1 and set

l = 1.
2: repeat
3: [µ̄n]l = [µ̄n−1]l +

[ĥnML]l−[ĥ
n−ωmax
ML ]l

ωmax
4: d = 0
5: repeat
6: Calculate (43) and (41)
7: d = d+ 1
8: until d > ωmax

9: l = l + 1
10: until l > Lc − 1
11: Return: r̂dn,l, l = 0, . . . , Lc − 1, d = 0, . . . , ωmax − 1.

where {
ϕ̂n,1ωnl ,l

=
∑ωnl −1
j=1

∑ωnl −1
k=1 r̂

|j−k|
n,l

ϕ̂n,2ωnl ,l
= 2

∑ωnl −1
j=1 r̂jn,l

. (45)

In order to reduce the complexity, we rewrite (45) as{
ϕ̂n,1ωnl +1,l = ϕ̂n,1ωnl ,l

+ ϕ̂n,1ωnl ,l
+ r̂0n,l

ϕ̂n,2ωnl +1,l = ϕ̂n,2ωnl ,l
+ 2r̂

ωnl
n,l

. (46)

Using (46), the complexity of (37) can be reduced to O(ωmax).
The proposed covariance matrix update algorithm (CMUA) is
summarised in Algorithm 2.

Algorithm 2 Covariance Matrix Update Algorithm (CMUA)
1: Initialisation: Obtain r̂dn,l, l = 0, . . . , Lc − 1, d =

0, . . . , ωmax − 1. Set ϕ̂n,11,l = 0, ϕ̂n,21,l = 0 with given l and
ωnl = 1.

2: repeat
3: Calculate (44) and (46)
4: ωnl = ωnl + 1
5: until ωnl > ωmax

6: Return: f̂nωn
l
,l
′, ωnl = 1, . . . , ωmax.

E. Optimum VSW Size and MSE Bound
Recall that the optimum solution for the objective function

Γn defined in (25) or (30) is given by (26), which is an
integer programming problem since the variables ωnl,opt to
be optimised are integers, and thus a traditional NP-complete
problem [33]. Since there are a total number of ωmax candidate
window sizes for each of the Lc taps, the optimisation of (26)
results in a high computational complexity of O[(ωmax)Lc ].

Nonetheless, note that (30), which is further developed
in (56) of Appendix I, may be reformulated as

Γ̂n =

Lc−1∑
l=0

{
Npσ2

(Np + σ2

σ̂2
n,l

)2
+

( σ2

σ̂2
n,l

)2f̂nωn
l
,l
′

(Np + σ2

σ̂2
n,l

)2
+

2σ2

ωnl

σ2

σ̂2
n,l

(Np + σ2

σ̂2
n,l

)2

}

=

Lc−1∑
l=0

M̂n
ωn
l
,l,

(47)
where we define

M̂n
ωn
l
,l =

Npσ
2

(Np + σ2

σ̂2
n,l

)2
+

( σ2

σ̂2
n,l

)2f̂nωn
l
,l
′

(Np + σ2

σ̂2
n,l

)2
+

2σ2

ωnl

σ2

σ̂2
n,l

(Np + σ2

σ̂2
n,l

)2
(48)
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and σ̂2
n,l is given in (40). Note that the corresponding estimated

version of Γn and fnωnl ,l
are used in (47). Therefore, we can

see that Γ̂n can be effectively decoupled into independent
items M̂n

ωnl ,l
, l ∈ {0, . . . , Lc − 1}, which are associated

with ωnl . Hence, with the aid of (48), we may solve Γ̂n
through exhaustively searching for each tap-specific ωnl,opt in
the candidate solution set of {1, . . . , ωmax}, yielding

ωnl,opt = argmin
ωnl ∈{1,...,ωmax}

M̂n
ωnl ,l

. (49)

In this case, the resultant complexity required by (26) can be
significantly reduced from O[(ωmax)Lc ] to O(ωmaxLc).

Moreover, the exhaustive search required by (49) may be
further simplified under certain conditions. More specifically,
we have the following theorem:

Theorem 1: For the lth tap of the CIR, there exists a
condition, under which the solution of ωnl,opt = ωmax can
be achieved.

The proof of Theorem 1 is given in Appendix II, where we
show that one of such conditions is

ψ =
σ2

Npσ2
n,l

≥ κ = 4ωmax − 10 +
4

ωmax
. (50)

In this case, when given a predefined ωmax, we may avoid
the exhaustive search procedure required in (49) by directly
setting ωnl,opt = ωmax, if the above-mentioned condition of
ψ ≥ κ is satisfied. However, this condition may not be easily
fulfiled in a typical indoor VLC environment under a large
κ. Nonetheless, if we set ωmax > 10

3 , then based on the
definition of κ in (50), we arrive at κ ≥ ωmax, which thus
results in a relaxed condition of ψ ≥ ωmax. Such a condition is
easier to satisfy than (50), because the random variable ψ falls
more likely into (0, ωmax) than into (0, κ) due to ωmax < κ.
Using the relaxed condition of ψ ≥ ωmax, the optimisation
procedure of (49) may be largely simplified. Based on the
above analysis, we summarise the proposed VSW optimisation
algorithm (VOA) in Algorithm 3.

Algorithm 3 VSW Optimisation Algorithm (VOA)
1: Initialisation: Set l = 0.
2: repeat
3: if σ2

Npσ̂
2
n,l
≥ ωmax then

4: ωnl,opt = ωmax

5: goto: 14
6: end if
7: Execute Algorithm 2
8: ωnl = 1
9: repeat

10: Calculate (48)
11: ωnl = ωnl + 1
12: until ωnl > ωmax

13: ωnl,opt = argminωn
l
∈{1,...,ωmax} M̂

n
ωn
l
,l

14: l = l + 1
15: until l > Lc − 1
16: Return: ωnl,opt, l = 0, . . . , Lc − 1 are the optimal VSW sizes.

Next, it is worth pointing out that the upper and lower
bounds of the AS-BMMSE-CE scheme, termed respectively as
AS-BMMSE upper bound (ASB-UB) and AS-BMMSE lower

bound (ASB-LB), are better than some existing ones. More
explicitly, we have the following theorem:

Theorem 2: The upper bound of Mn
ωnl ,l

is lower than the
CRLB [26], and the lower bound of Mn

ωnl ,l
is lower than

the traditional Bayesian lower bound (TBLB) [7], [26], where
Mn
ωnl ,l

is the ideal version of M̂n
ωnl ,l

in (48).
The proof of Theorem 2 is given in Appendix III. Based

on the above discussions, we finally outline the proposed AS-
BMMSE-CE scheme in Algorithm 4, whose visual illustration
is provided in Fig. 2.

Algorithm 4 The AS-BMMSE Algorithm

1: Initialisation: Obtain λ, ωmax and Lc. Set Ĉn
h =

diag( 1
Lc
, . . . , 1

Lc
), ĥkML = 0, k = 0,−1, . . . ,−ωmax + 2 and

n = 1.
2: repeat
3: Ĥ[n, k] = Ŷ [n,k]

X[n,k]
, k ∈ Ppilot

4: Calculate (11)
5: Execute Algorithm 1
6: l = 0
7: repeat
8: Calculate (39) and (40)
9: l = l + 1

10: until l > Lc − 1
11: Execute Algorithm 3
12: l = 0
13: repeat
14: [µ̂nh]l = 1

ωn
l,opt

∑ωnl,opt−1

i=0 [ĥn−iML ]l

15: l = l + 1
16: until l > Lc − 1
17: Calculate (14)
18: Apply N -point FFT to get Ĥn

19: n = n+ 1
20: until n approaches a predefined maximal value.

V. NUMERICAL RESULTS AND ANALYSIS

In this section, simulation results are provided for demon-
strating the effectiveness of the proposed AS-BMMSE-CE
scheme. Assuming a general indoor scenario, a room model
with a size of 5 × 5 × 4m3 is adopted, where the maximal
reflection order of the VLC channel model [12] is set to three,
while the centre of the room is located at (0, 0). Four rooftop
LEDs, each assuming a fixed transmit power, form a square-
shaped coverage area for both illumination and communication
services. The UE employs a single PD to receive the same
signal transmitted from all LEDs and moves around in the
room. Naturally, the instantaneous CIR varies as soon as UE’s
position changes. Note that the field of view (FOV) of the PD
may have an impact on the performance of VLC systems. As
an example, we set the FOV to 85◦ as Configuration A in [11].
The parameters in Table I apply to most scenarios tested in
this section, unless otherwise stated.

As the first test, in Fig. 3(a), we evaluate the theoretical
MSE performance of AS-BMMSE-CE using (25) with differ-
ent sizes of the statistic window for a single channel tap. For
simplicity, σ2 is normalised to Np. Without loss of generality,
we show two example cases associated with two randomly
selected UE positions, namely the 6th and 8th taps at the
positions of (−1.6,−0.7) and (−1.0, 0.5), respectively. From
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TABLE I
MAJOR PARAMETERS FOR SIMULATIONS.

Parameter Value
Reflection coefficient (wall/floor/ceiling) 0.8
DC bias 13dB
Sampling rate 500MHz
LED position (−1.5,−1.5, 4), (1.5, 1.5, 4),

(−1.5, 1.5, 4), (1.5,−1.5, 4)
Semi-half power angle 60◦
Field of view (FOV) 85◦
Modulation scheme DCO-OFDM
Number of subcarriers, N 1024
Cycle prefix length, Ncp 64
Maximum tap delay 62ns
Smallest FD pilot subcarrier index 16
FD pilot interval 32
Route of UE’s movement (2.5, 2.5)→ (0,−2.5)
Distance from floor to UE 1.0m
Maximal statistic window size, ωmax 50
Forgetting factor, λ 0.6
σ2
const in (40) σ2/Np

Size of statistic window, ω
l

n

0 50 100 150 200

M
SE

10-3

10-2

10-1

100

Theoretical MSE Performance

CRLB
6th tap

8th tap

ASB-UB
Instaneous
TBLB
ASB-LB

(a) Theoretical MSE bounds.

E
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M
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Adaptive vs. Fixed Window Sizes

Fixed size = 5
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Fixed size = 25
Fixed size = 50
Fixed size = 100
VSW

(b) Adaptive vs. fixed window sizes.

Fig. 3. The theoretical MSE performance and the simulation MSE
performances of AS-BMMSE-CE exploiting fixed-size window or
VSW.

the figure, we can see that the achievable MSE performance
of the AS-BMMSE-CE scheme depends on the tap/position-
specific statistic window size ωnl , where there exists a different
optimal value for each case. Furthermore, we also plot the
various MSE performance bounds associated with the two
cases, respectively. It can be seen from Fig. 3(a) that both the
ASB-UB of (72) and the ASB-LB of (70) are lower than the
CRLB [7], [26], implying that AS-BMMSE-CE outperforms
MLE of [7] in terms of MSE performance. Moreover, our
scheme may also be capable of breaking the TBLB of [7]
with the aid of an appropriately selected window size ωnl , as
observed for instance in the case of the 6th tap in Fig. 3(a).

Next, for demonstrating the impact from the optimum value
of ωnl,opt indicated by (49), we investigate the MSE versus
Eb/N0 performance of AS-BMMSE-CE under adaptive or
fixed-size statistic windows in Fig. 3(b), where Eb denotes
energy per bit and N0 = σ2. Under the adaptive option,
whenever the UE moves to a different position in the room, the
system calculates the optimal values ωnl,opt, l = 0, . . . , Lc− 1
based on (26), hence the so-called VSW mechanism. It can be
inferred from Fig. 3(b) that the VSW-aided scheme achieves
the lowest possible MSE, as compared with its counterparts

E
b
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0
 [dB]

20 25 30 35 40 45

M
SE

10-4
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MSE of Selected CE Schemes
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(a) MSE performances.
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(b) BER performances.

Fig. 4. The MSE and BER versus Eb/N0 performances of AS-
BMMSE-CE and other CE schemes.
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(a) MSE vs. UE position index.
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(b) MSE vs. subcarrier index.

Fig. 5. The MSE versus UE position index and subcarrier index
performances of AS-BMMSE-CE and other CE schemes, assuming
Eb/N0 = 45dB.

using a fixed-size statistic window. In the sequel, we assume
that the VSW function is always enabled for AS-BMMSE.

In Fig. 4, we compare the MSE and BER performances of
AS-BMMSE-CE with selected existing CE schemes, such as
MLE [7], one-dimensional (1D) MMSE Wiener filtering [3],
APLI [5], domain-transform least squares (DTLS) [8] and
RLS [9]. The reference schemes were such configured, that
they fitted into the common system platform and the channel
model under comparable conditions. From Fig. 4, we can see
that our method has the best MSE and BER performances
among the schemes investigated. Moreover, it has only 0.5dB
loss compared with the benchmark with ideal CSI, as seen in
Fig. 4(b).

Fig. 5(a) shows the MSE performances of various CE
schemes versus the UE position index, which corresponds to
the consecutive positions of the UE when it moves along the
route specified in Table I. On the other hand, Fig. 5(b) plots
the various schemes’ MSE performances versus the subcarrier
index. From Fig. 5, we can see that while other CE methods
yield worse and/or fluctuant performances at different UE
positions or subcarrier indices, the proposed AS-BMMSE-CE
scheme offers the best yet stable performance in both the UE
position or subcarrier domain. This property is desirable, since
it eventually translates to a near-uniform quality of data service
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Fig. 6. Impact of the forgetting factor λ on the MSE and BER
performances at Eb/N0 = {25, 35, 45}dB.
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Fig. 7. An example of FD CTF estimation using AS-BMMSE-CE.

across the room.
As a further investigation, in Fig. 6, the impact from the

forgetting factor λ mentioned in (39) is investigated. More
specifically, the value of λ was tested in the full range of
[0, 1] under two example routes of UE movement, name-
ly ROUTE1 : (−2.5, 2.5) → (0, 2.5) and ROUTE2 :
(−2.5, 2.5) → (0, 0) → (2.5, 0), respectively. From the MSE
and BER performances shown in Fig. 6, we note that the value
of λ does not have a significant impact on AS-BMMSE-CE,
except when it becomes larger than about 0.95. This helps to
simplify the implementation of AS-BMMSE-CE dispensing
with the need of adapting λ, whose value may otherwise have
to be acquired by complicated methods, such as some adaption
to the exponential weighting factor [34].

Last but not least, Fig. 7 exhibits a visualised example
for demonstrating the achievable performance of the proposed
CE scheme. More explicitly, the true and estimated FD CTFs
Ĥ[n, k] (n = 71 + 40j; j = 0, . . . , 49; k = 0, . . . , N − 1)
associated with 50 consecutive UE positions starting from
position #71 under a spatial measurement resolution of 40
intervals or approximately 9cm, are extracted from the full set
of CE results collected along the route defined in Table I. The
CTF samples are plotted on the complex plane at Eb/N0 =
45dB. As seen from Fig. 7, one set of N = 1024 small solid
dots, where each dot denotes one CTF sample at its associated
subcarrier, forms one round-shaped contour which represents
one OFDM symbol. There are totally 50 such OFDM-symbol-

related contours that gradually shift from one to the next on
the complex plane, reflecting the adjacent spatial positions that
they correspond to. The magnified subfigures in Fig. 7 illustra-
tively capture the CTFs at subcarrier #0 of a few consecutive
OFDM symbols. The contours are symmetric with respect to
the real axis, since the TD CIR of the VLC channel is real-
valued. We can see that the FD CTF estimates closely match
the contours of the true channel, which demonstrates that
AS-BMMSE-CE is capable of capturing the instantaneously-
varying fading envelop regardless of the UE’s position. This
illustrates the accuracy and robustness of the proposed CE
approach, as exemplified in Fig. 7.

As a further remark, in Table II we summarise the com-
putational complexity required by the various CE schemes for
the processing during one OFDM symbol, where Ntap denotes
the filter order of 1D-MMSE [3] and RLS [9] CEs, W is the
sliding window size in the APLI-CE [5], and {α, β} ∈ [0, 1]
are complexity-contributing probabilities associated with the
proposed complexity reduction techniques, namely Algorithm-
s 1-3 as well as Theorem 1. According to Table II, taking
configurations of Lc = 32 and Ntap = 25 as an exam-
ple, the worst-case computational complexities of additions
required by AS-BMMSE are about 4.67-, 0.26- and 0.0033-
fold of MLE [7], RLS [9] and 1D-MMSE Wiener filter [3],
respectively. In the best case, these numbers become 2.33, 0.13
and 0.0016, respectively. Therefore, we may conclude that the
proposed AS-BMMSE-CE scheme can achieve an excellent
performance at the cost of a modest computational complexity.

VI. CONCLUSIONS

In this paper, a so-called AS-BMMSE-CE technique is
designed for indoor DCO-OFDM-VLC systems. The proposed
scheme is equipped with an efficient mechanism referred to
as VSW, which offers an accurate yet robust way for tracking
the instantaneous indoor optical channel. Through the VSW
function, the achievable channel MSE can be minimised, hence
becoming lower than the CRLB and sometimes even lower
than the TBLB, thanks to the past channel information collect-
ed in the statistic window with an adaptively optimised size.
Furthermore, we also devise efficient algorithms that help to
reduce the computational complexity of the proposed scheme.
Extensive theoretical and simulation results are provided to
demonstrate the benefits of the new CE method. Our future
work will be to consider the extension of AS-BMMSE to
multiple-input multiple-output (MIMO) VLC systems.

APPENDIX I
DERIVATIONS OF (30) AND (35)

A. Derivation of (30)

Firstly, recall that (30) is derived from (25), which contains
four items. We now expand these items individually as follows.

Observing that Φn in (14) is a diagonal matrix, and util-
ising (19) as well as the specific pilot pattern designed in
Section IV-C, we may expand the first item of (25) to

σ2Tr{Ψn
1ΨnH

1 } = σ2
Lc−1∑
l=0

Np

(Np + σ2

σ2
n,l

)2
, (51)
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TABLE II
COMPUTATIONAL COMPLEXITY OF THE VARIOUS CE SCHEMES INVESTIGATED.

CE scheme Number of complex additions Number of complex multiplications
Linear interpolation (Nd − 1)Np (Nd − 1)Np
APLI [5] (W + 15

4
Nd − 1

4
)Np ( 5

2
Nd − 13

4
)Np

1DMMSE Wiener filter [3] (N3
tap +N2

tap + 2Ntap)N (N3
tap +N2

tap +Ntap)N +Np
MLE [7], TDLS [8] LcNp +N logN Np + LcNp + 1

2
N logN

RLS [9] (5N2
tap + 3Ntap + 2 + Lc)Np +N logN (5N2

tap + 6Ntap + 3 + Lc)Np + 1
2
N logN

AS-BMMSE (10 + 17α+ β)Lcωmax + 2ωmax + 6Lc (7 + 20α)Lcωmax + ωmax + 6Lc + (2Lc + 1)Np
+LcNp +N logN + 1

2
N logN

where σ2
n,l (l = 0, . . . , Lc − 1) are defined in (38). Similarly,

the second item of (25) can be reformulated to

Tr{E{Ψn
2∆h∆hHΨnH

2 }} =

Lc−1∑
l=0

( σ2

σ2
n,l

)2

(Np + σ2

σ2
n,l

)2
fnωnl ,l,

(52)

where we define fnωnl ,l as

fnωnl ,l = E{(ω
n
l − 1

ωnl
[∆hn]l −

1

ωnl

ωnl −1∑
k=0

[vn−k]l −
1

ωnl

ωnl −1∑
k=0

[∆hn−k]l)
2}.

(53)
Since vn and ∆hn, as well as Vn and ∆hn are un-
correlated, we have Tr{E{vn∆hHn }} = 0Lc×Lc and
Tr{E{Vn∆hHn }} = 0Np×Lc , where Vn, ∆hn and vn are
defined in (13), (17) and (23), respectively. Furthermore, we
also have Tr{E{vivHj }} = 0Lc×Lc , for ∀i, j, i 6= j. Using
these conditions, (53) can be simplified to (31). Similarly, we
can expand the third and forth items of (25) to

−Tr{E{Ψn
1Vn∆hHΨnH

2 }} =

Lc−1∑
l=0

σ2

ωnl

σ2

σ2
n,l

(Np + σ2

σ2
n,l

)2
,

(54)
and

−Tr{E{Ψn
2∆hVH

n ΨnH
1 }} =

Lc−1∑
l=0

σ2

ωnl

σ2

σ2
n,l

(Np + σ2

σ2
n,l

)2
, (55)

respectively.
Exploiting (51), (52), (54) and (55), the objective func-

tion (30) becomes

Γn = Tr{E{εnεHn }} =

Lc−1∑
l=0

[
Npσ

2

(Np + σ2

σ2
n,l

)2
+

( σ2

σ2
n,l

)2fnωnl ,l

(Np + σ2

σ2
n,l

)2

+
2σ2

ωnl
·

σ2

σ2
n,l

(Np + σ2

σ2
n,l

)2
].

(56)
Based on (31) and (56), we note that Γn of (30) is decoupled to
a function of three parameters, namely Cn

h, rdn,l and ωnl . Since
Cn

h and rdn,l can be estimated by (40) and (34), respectively,
ωnl becomes the only variable that remains to be optimised.
Then we can use (56) to obtain (48) for decoupled optimisation
of ωnl , as suggested by Algorithm 3.

Furthermore, it is worth mentioning that under the wide
sense stationary uncorrelated scattering (WSSUS) channel
model and exploiting the pilots’ semi-orthogonal property

of (27), if ωnl → +∞, l ∈ {0, . . . , Lc−1}, Γn of (30) reduces
to the traditional Bayesian estimation result of [7], [26] as

limωnl →+∞, l∈{0,...,Lc−1} Γn = σ2Lc
Np

1
Lc

∑Lc−1
l=0

1
1+σ2/(σ2

n,lNp)
.

(57)

B. Derivation of (35)
We define the noise item existing in r̂dn,l, which are the

estimated elements of the UE position covariance matrix Rn,l

defined in (33), as E{r̂dn,l,noise} = E{r̂dn,l} − rdn,l. Next, util-
ising (22), (32), (34) as well as Tr{E{vn∆hHn }} = 0Lc×Lc ,
we may expand E{r̂dn,l,noise} to

E{r̂dn,l,noise}

=
1

ωmax
E

{
ωmax−d−1∑

j=0

([ĥn−jML ]l − [µ̄n]l)([ĥ
n−(j+d)
ML ]l − [µ̄n]l)

}
− rdn,l

=
1

ωmax
E

{
ωmax−d−1∑

j=0

([hn−j + vn−j ]l − [h̄n + v̄n]l)

· ([hn−(j+d) + vn−(j+d)]l − [h̄n + v̄n]l)

}
− rdn,l

=
1

ωmax

ωmax−d−1∑
j=0

E

{
([hn−j ]l − [h̄n]l)([hn−(j+d)]l − [h̄n]l)

}

+
1

ωmax

ωmax−d−1∑
j=0

{
E{[vn−j ]l[vn−(j+d)]l}+ E{[v̄n]l[v̄n]l}

− E{[vn−j ]l[v̄n]l} − E{[v̄n]l[vn−(j+d)]l}
}
− rdn,l

=
1

ωmax

ωmax−d−1∑
j=0

{
E{[vn−j ]l[vn−(j+d)]l}+ E{[v̄n]l[v̄n]l}

− E{[vn−j ]l[v̄n]l} − E{[v̄n]l[vn−(j+d)]l}
}
,

(58)
where we define v̄n = 1

ωmax

∑ωmax−1
k=0 vn−k and h̄n =

1
ωmax

∑ωmax−1
k=0 ĥn−kML . Then, we finally arrive at (35).

APPENDIX II
PROOF OF THEOREM 1

Based on (48), we define the following function by replacing
the estimates with their ideal versions as

M̂n
ωnl ,l

= Ω(f̂nωnl ,l, σ̂
2
n,l)→Mn

ωnl ,l
= Ωn(fnωnl ,l, σ

2
n,l). (59)

Then, Mn
ωnl ,l

in (59) can be developed as

Mn
ωnl ,l

=
σ2/Np

[1 + σ2/(σ2
n,lNp)]

2
(1 +

σ2

σ2
n,lNp

gnωnl ,l), (60)
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where gnωnl ,l is given by

gnωnl ,l =
σ2

Npσ2
n,lω

n
l

+
(ωnl )2 + 1

(ωnl )2
+
ωnl − 1

(ωnl )2
r0n,l
σ2
n,l

+

ωnl −2∑
k=1

−2k

(ωnl )2
rkn,l
σ2
n,l

− 2(ωnl − 1)

(ωnl )2
r
ωnl −1
n,l

σ2
n,l

.

(61)

Note that gnωnl ,l in (61) is a function of the independent

variables ωnl , r
0
n,l, . . . , r

ωnl −1
n,l , where rdn,l (d = 0, . . . , ωnl − 1)

are defined in (32). Furthermore, observing (60), we can see
that Mn

ωnl ,l
is a linear function of gnωnl ,l. Thus, the optimisation

problem of (49) can be translated to the problem of (61).
In order to prove Theorem 1, we need to find at least one

condition, under which we have ωnl,opt = ωmax for the lth tap.
Based on (61), we have

gnωn
l
,l − gnωn

l
+1,l =

σ2

Npσ2
n,l

· 1

ωnl (ωnl + 1)
+

2ωnl + 1

(ωnl )2(ωnl + 1)2

− −(ωnl )2 + ωnl + 1

(ωnl )2(ωnl + 1)2
·
r0n,l
σ2
n,l

+
2ωnl

(ωnl + 1)2
·
r
ωnl
n,l

σ2
n,l

−
ωnl −1∑
k=1

2k
[ 1

(ωnl )2
− 1

(ωnl + 1)2
]
·
rkn,l
σ2
n,l

.

(62)
According to [35], the definition of correlation coefficients can
be represented by ρXY = COV (X,Y )√

D(X)
√
D(Y )

∈ [−1, 1], where

COV (X,Y ) is the covariance function, while D(X) and
D(Y ) denote the variances of X and Y , respectively. Then
exploiting (32), the correlation coefficient for the (n − j)th

and (n− k)th taps can be written as

ρ
|j−k|
n,l =

E{([hn−j ]l − [µnh]l)([hn−k]l − [µnh]l)
∗}√

D([hn−j ]l)
√
D([hn−k]l)

=
r
|j−k|
n,l

σn−j,lσn−k,l
,

(63)

where σn−j,l =
√
D([hn−j ]l) and σn−k,l =

√
D([hn−k]l)

are the variances of the (n − j)th and (n − k)th positions,
respectively. By selecting a not-too-large statistic window size,
we have σn−j,l ≈ σn−k,l ≈ σn,l and hence (63) reduces to

ρ
|j−k|
n,l =

r
|j−k|
n,l

σ2
n,l

∈ [−1, 1], d = 0, . . . , ωl − 1. (64)

Thus, considering the value range of ρ|j−k|n,l given in (64), we
may simplify (62) to

gnωnl ,l − g
n
ωnl +1,l ≥

−4(ωnl )2 + ( σ2

Npσ2
n,l

+ 2)(ωnl + 1)

ωnl (ωnl + 1)2
,

(65)
where the equality sign holds, iff rdn,l = αd (d = 0, . . . , ωnl −
1), where α0 = σ2

n,l indicates the auto-correlation coefficient
of the lth tap, while we set αd = σ2

n,l (d = 1, . . . , ωnl −2) and
αωnl −1 = −σ2

n,l. In this case, we define the numerator of (65)
as

Υ(ωnl ) =− 4(ωnl )2 + (
σ2

Npσ2
n,l

+ 2)(ωnl + 1)

=− 4(ωnl )2 + (
σ2

Npσ2
n,l

+ 2)ωnl + (
σ2

Npσ2
n,l

+ 2),

(66)

which is a quadratic function in one unknown. Noting that
Υ(0) > 0, we have Υ(ωnl ) ≥ 0 (ωnl = 1, . . . , ωmax − 1), iff
Υ(ωmax − 1) ≥ 0. Thus, if we let

Υ(ωmax − 1) = −4(ωmax − 1)2 + (
σ2

Npσ2
n,l

+ 2)ωmax ≥ 0,

(67)
which is equivalent to

σ2

Npσ2
n,l

≥ 4ωmax − 10 +
4

ωmax
, (68)

then the condition of Υ(ωnl ) ≥ 0 (ωnl = 1, . . . , ωmax − 1)
is satisfied. This translates to the fulfillment of the condition
gnωnl ,l

≥ gnωnl +1,l (ωnl = 1, . . . , ωmax − 1), which implies that
gnωnl ,l

is a monotonic decreasing sequence subject to ∀ωnl ∈
{1, . . . , ωmax − 1}. This indicates that under the condition
of (68), we will have the optimal statistic window size of
ωnl,opt = ωmax. The proof of Theorem 1 completes.

APPENDIX III
PROOF OF THEOREM 2

Based on (61) and (64), we have

gnωnl ,l ≥
σ2

Npσ2
n,lω

n
l

+
2

ωnl
, (69)

where the equality sign holds, iff rdn,l = σ2
n,l (d = 0, . . . , ωnl −

1). Then, using (60) and (69), we arrive at the ASB-LB as

Mn
ωnl ,l
≥ σ2/Np

[1 + σ2/(σ2
n,lNp)]

2

[
1+(

σ2

σ2
n,lNp

)2
1

ωnl
+

2

ωnl

σ2

σ2
n,lNp

]
.

(70)
On the other hand, based on (61) and (64), we can obtain

gnωnl ,l ≤
σ2

Npσ2
n,lω

n
l

+ 2, (71)

where the equality sign holds, iff rdn,l = αd (d = 0, . . . , ωnl −
1), where α0 = σ2

n,l and αd = −σ2
n,l (d = 1, . . . , ωnl − 1).

Using (60) and (71), we have the ASB-UB as

Mn
ωnl ,l
≤ σ2/Np

[1 + σ2/(σ2
n,lNp)]

2

[
1 + (

σ2

σ2
n,lNp

)2
1

ωnl
+ 2

σ2

σ2
n,lNp

]
.

(72)
By inserting ωnl = +∞ and ωnl = 1 into (70) and (72), we

can get
Mmin ≤Mn

ωnl ,l
≤Mmax, (73)

where Mmin = σ2

Np
1

[1+σ2/(σ2
n,lNp)]

2 and Mmax = σ2

Np
. Since

Mmax is the CRLB [26], the upper bound of the proposed AS-
BMMSE-CE scheme is guaranteed to be lower than CRLB.
Furthermore, we have Mmin ≤ MB = σ2

Np
1

[1+σ2/(σ2
n,lNp)]

,
proving that the lower bound of AS-BMMSE-CE is lower
than MB , which is the TBLB [7]. The proof of Theorem 2
completes.
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