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Abstract— Visible light communication (VLC) is considered
as a potential candidate of five generation (5G) technologies
and thus attracts increasing research interest recently. Optical
orthogonal frequency division multiplexing (O-OFDM) has been
proposed for VLC systems to eliminate the multi-path inter-
ference, while also facilitating frequency domain equalisation
(FDE). In comparison to conventional radio frequency (RF) based
wireless communication, there has been limited considerations
on channel estimation (CE) for VLC, where the indoor optical
wireless channel model differs from the traditional RF case.
In this paper, we present a new channel estimation algorithm
for indoor downlink (DL) VLC systems that exploits historical
information in an adaptive and efficient way. The proposed
scheme is capable of offering superior performance at the cost of
modest complexity under practical scenarios. Detailed theoretical
analysis is provided along with extensive numerical results,
demonstrating the effectiveness of the proposed CE approach.

Index Terms— Bayesian estimation, channel estimation, vari-
able statistic window (VSW), visible light communication (VLC).

I. INTRODUCTION

IN recent years, visible light communication (VLC) [1]
has emerged as a promising technology for complementing

conventional radio frequency (RF) based wireless communi-
cation systems. In comparison to the RF scenario, there has
been limited considerations on channel estimation (CE) for
VLC. The principles of conventional CE technologies, for ex-
ample the pilot-aided channel estimation (PACE) schemes [2],
[3], may also be applicable to VLC scenarios. Depend-
ing on the domain where the estimators operate, we have
frequency-domain (FD) or time-domain (TD) based CEs. FD-
CEs [2]–[4] employ methods such as minimum mean square
error (MMSE) [2], [3], adaptive polar linear interpolation
(APLI) [4], etc., which either assume idealistic assumptions
or suffer notable residual error floors. On the other hand, TD-
CEs [5]–[7] utilise channel impulse response (CIR) for esti-
mating channel state information (CSI) by invoking MMSE,
recursive least squares (RLS) [8] or other algorithms [6], [9].
Nonetheless, they often rely on specific a priori information
that may not be available in practical systems, or on param-
eters for example forgetting factors with fixed values, which
therefore may not adapt to CSI variations.

Since VLC systems typically operate in indoor optical wire-
less channels [10] that differ from traditional wireless radio
channels, a direct migration of RF CE techniques into VLC
may not be optimal. Due to the intensity modulation/direct

detection (IM/DD) mechanism invoked by VLC systems, the
transmitted optical signal has non-negative real values and
so does the CIR. Furthermore, another significant differ-
ence between the two types of channels is the time-varying
characteristics. More specifically, when the user equipment
(UE) moves under the VLC channel, the variation of the
channel taps’ envelopes and the path delay no longer obey the
traditional Doppler spectrum [10]. Moreover, compared with
the sparse taps of many popular RF channel models, the taps
of VLC channels are denser and thus impose specific design
requirements from the CE perspective.

Against this background, in this paper we propose a new
CE method, termed as adaptive statistical Bayesian minimum
mean square error channel estimation (AS-BMMSE-CE), for
orthogonal frequency division multiplexing (OFDM) aided VL-
C systems. The proposed new CE scheme achieves a superior
performance in terms of both mean square error (MSE) and bit
error rate (BER), with the aid of a new algorithm that optimises
the so-called variable statistic window (VSW). By effectively
tracking real-time channel variations, the AS-BMMSE-CE
scheme does not have to first predict the CSI and then to
modify parameters for the next prediction period, as proposed
by some decision-directed CE (DDCE) techniques [9], thus
helping to minimise error propagations. Furthermore, it has
a fast convergence, high accuracy and high robustness, as
verified by extensive simulation results and comparisons with
various existing CE techniques.

The organisation of this paper is as follows. The overall
system model is introduced in Section II, followed by the
detailed design of the AS-BMMSE-CE scheme in Section III.
Simulation results are offered and analysed in Section IV,
before we finally conclude our findings in Section V.

Notations: Bold variables denote matrices or vectors; Tr{·}
stands for the trace operation; (·)T and (·)H refer to the
transpose and Hermitian transpose operations, respectively;
(·)∗ is the conjugation of (·); [·]i and [·]i,j indicate the selection
of the ith element of a vector and the (i, j)th element of a
matrix, respectively; E{·} is the expectation operation; D{·}
is the variance operation; IL denotes an L×L identity matrix;
diag{·} declares a diagonal matrix; and (̂·) defines the estimate
of the variable concerned.

II. SYSTEM MODEL

As an example, we consider a general VLC system based
on direct-current-biased optical OFDM (DCO-OFDM), as
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shown in Fig. 1. However, it is also worth pointing out that
other popular optical OFDM (O-OFDM) schemes are also
applicable with minimum modifications.
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Fig. 1. Schematic of a typical DCO-OFDM system.

Define the subcarrier indices of pilot symbols as a set Ip =
{P0 + i ·Nd, i = 0, 1, . . . , Np/2− 1}, where Nd is the pilot
interval, Np is the total number of pilots required for one O-
OFDM symbol and P0 is the smallest subcarrier index among
all pilots. For the transmission towards the UE at the nth

position in the room, the pilot symbols are multiplexed with
data symbols at an equal-distance of Nd to produce a FD signal
vector Xn =

[
X[n, 0], . . . , X[n,N − 1]

]T ∈ CN×1, where
the sets of pilot subcarrier indices and data subcarrier indices
may be expressed as Ppilot = {k|k ∈ Ip or N − k ∈ Ip} and
Pdata = {0, . . . , N − 1}\Ppilot, respectively, while N is the
size of inverse fast Fourier transform (IFFT) and C denotes the
set of complex numbers. Since IM-based optical signals have
non-negative real values, Xn is constrained to be Hermitian
symmetric as

X[n, k] = X∗[n,N − k] for 0 < k <
N

2
, (1)

where X[n, 0] = X[n,N/2] = 0. Then, after the serial-to-
parallel (S/P) and IFFT operations seen in Fig. 1, we have a
real vector xn = FIXn, where FI = {fn,k} ∈ CN×N , fn,k =
1
N e

j 2πnk
N for 0 ≤ {n, k} ≤ N − 1. The generated electrical

DCO-OFDM signal sn is then converted to its optical version
and transmitted through the VLC channel with a discrete form

hn =
[
h[n, 0], . . . , h[n,Lc − 1]

]T ∈ RLc×1+ , (2)

where Lc is the maximum number of CIR taps and R+ denotes
the set of positive real numbers.

In the electrical domain of the receiver, after cyclic prefix
(CP) removal, S/P conversion and fast Fourier transform
(FFT), the received FD signal Yn at the kth subcarrier can be
generated as

Y [n, k] = H[n, k]X[n, k] +N [n, k], k = 0, . . . , N − 1, (3)

where H[n, k] is the channel transfer function (CTF), and
N [n, k] is the complex additive white Gaussian noise (AWGN)
with zero mean and variance σ2. With the aid of the CE block
in Fig. 1, whose details will be revealed in Section III, the
estimated channel coefficients Ĥ[n, k] can be obtained.

III. THE DESIGN OF VSW-AIDED AS-BMMSE-CE

The proposed VSW-aided AS-BMMSE-CE scheme is im-
plemented in the CE block seen in Fig. 1. We assume that
a comb-type pilot pattern with subcarrier indices defined by
Ppilot is used, where the specific pilot arrangement is designed
in Section III-C.

A. TD PACE Process

As the first step, the least squares (LS) based CE is
employed to obtain the channel estimates at the Np pilot
subcarriers, yielding

Ĥ[n, k] =
Y [n, k]

X[n, k]
= H[n, k] +

X∗[n, k]

|X[n, k]|2
N [n, k], (4)

where k ∈ Ppilot. The TD CE function based on maximum
likelihood estimation (MLE) [6] is then invoked for generating
the initial estimates of hn in (2) with the aid of (4). Assuming
hn is deterministic but unknown, the MLE-based CE is capa-
ble of approaching the Cramér-Rao lower bound (CRLB) [6],
[11]. To elaborate a little further, first note that the FD CTF
vector Hn can be calculated through

Hn = Bhn, (5)

where B = {Bk,l} ∈ CN×Lc , Bk,l = e−j
2πkl
N for 0 ≤ k ≤

N − 1, 0 ≤ l ≤ Lc − 1. Denote the FD noise after FFT as
Nn = Dnn ∈ CN×1, which is complex-valued AWGN with
zero mean and covariance σ2IN , and D = F−1I = {Dn,k} ∈
CN×N , Dn,k = e−j

2πnk
N for 0 ≤ {n, k} ≤ N − 1. Define

Hn
P as the CTF vector corresponding to pilot subcarriers,

formulated by
Hn
P = SHn, (6)

where S is an Np ×N selecting matrix that helps to extract
the pilots’ indices. More specifically, the ith (i = 0, . . . , Np−
1) row of S is constituted by zeros except the ([Ppilot]i)

th

element, which has a value of 1. In other words, we have
[S]i,[Ppilot]i = 1 and SSH = INp . We also define an Np × Lc
matrix

WP = SB, (7)

where [WP ]k,l = e−
j2π·[Ppilot]k·l

N (0 ≤ k ≤ Np − 1, 0 ≤ l ≤
Lc− 1). According to [6], [11], the MLE estimate of the CIR
can be written as

ĥnML = (WH
P WP )−1WH

P Ĥn
P , (8)

where Ĥn
P is the LS estimates of Hn

P in (6), formulated by

Ĥn
P = WPhn + %n

−1SNn = WPhn + Vn, (9)

where Vn = %n
−1SNn, %n = diag{p0, . . . , pNp−1} and pi

is the ith (i = 0, . . . , Np−1) pilot symbol. Note that by using
pilot symbols with constant amplitude, each element in Vn is
AWGN with zero mean and variance σ2, yielding E{Vn} =
0Np×1 and E{VnVH

n } = E{%n−1SNnNH
n SH%n

−1H} =
σ2INp .

Different from the MLE-based CE that assumes no informa-
tion of hn, the so-called BMMSE estimator [6] assumes that
the mean value and the covariance matrix of the tap-specific
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coefficients at the UE’s nth position, which are respectively
denoted by an Lc×1 vector µnh and an Lc×Lc matrix Cn

h, are
known. The BMMSE version of the CIR estimate is expressed
by [6]

ĥn = µnh + ΦnWH
P (Ĥn

P −WPµ
n
h), (10)

where we define Φn = [WH
P WP + σ2(Cn

h)−1]−1. Note that
the BMMSE estimates of (10) are more accurate than their
MLE counterparts of (8), thanks to the knowledge of µnh
and Cn

h. However, in practical VLC systems the values of
µnh and Cn

h are typically difficult to obtain or unavailable,
thus greatly restricting the applicability of the conventional
BMMSE-CE method. Hence, how to derive a method that can
help to estimate these parameters in an efficient and robust
way, becomes a key issue in improving the practicality of
BMMSE-CE for VLC systems, as to be resolved in the sequel.

B. VSW-based Optimisation

In this section, we show how µnh can be estimated, together
with the derivation of the objective function for our CE
problem. By inserting (9) into (10), we have

ĥn = µnh + ΦnWH
P (WPhn + Vn)−ΦnWH

P WPµ
n
h

= (ILc −ΦnWH
P WP )µnh + ΦnWH

P WPhn + ΦnWH
P Vn

= hn + εn,
(11)

where εn denotes the estimation error for the TD CIR and is
formulated by

εn = ΦnWH
P Vn − (ILc −ΦnWH

P WP )∆hn, (12)

where
∆hn = hn − µnh (13)

denotes the change between the CIR hn and its mean µnh at
the UE’s nth position. Furthermore, (12) may be rewritten as

εn = Ψn
1Vn −Ψn

2∆hn, (14)

where we define Ψn
1 = ΦnWH

P and Ψn
2 = ILc−ΦnWH

P WP .
Since µnh in (13) is not obtainable in practical systems, we may
instead use its a priori estimate µ̂nh, yielding the estimated
change of the channel

∆ĥn = hn − µ̂nh. (15)

In order to improve the accuracy of µ̂nh, we propose the
so-called VSW mechanism, which exploits the tap-specific
historical channel information in a given statistic window with
an optimised size. In this scheme, each element of µ̂nh is the
tap coefficient averaged over the specific statistic window size
ωnl , l ∈ {0, . . . , Lc − 1}, formulated as

[µ̂nh]l =
1

ωnl

ωnl −1∑
k=0

[ĥn−kML ]l, l ∈ {0, . . . , Lc − 1}, (16)

where based on (8), the MLE-based estimate is given by [6]

ĥnML = (WH
P WP )−1WH

P Ĥn
P = hn + vn = µnh + ∆hn + vn,

(17)

while the superscript (·)n−k in (16) denotes the (n− k)th

position. Inserting (9) into (17), the equivalent TD noise vn
can be calculated as

vn = (WH
P WP )−1WH

P Ĥn
P − hn = (WH

P WP )−1WH
P Vn.

(18)
Utilising (16) and (17), we may further develop (15) as

[∆ĥn]l =
ωnl − 1

ωnl
[∆hn]l −

1

ωnl

ωnl −1∑
k=0

[vn−k]l −
1

ωnl

ωnl −1∑
k=1

[∆hn−k]l.

(19)
If we define the FD MSE associated with the kth subcarrier

at the UE’s nth position as γn(k) = E{|Ĥ[n, k]−H[n, k]|2},
then the MSE averaged over one OFDM symbol can be
denoted by Γn = 1

N

∑N−1
k=0 γ

n(k). Using (5), (11) and (14),
Γn may be transformed to

Γn =
1

N
Tr{E{(Ĥn −Hn)(Ĥn −Hn)H}} = Tr{E{εnεHn }}

= σ2Tr{Ψn
1ΨnH

1 }+ Tr{E{Ψn
2 ∆hn∆hHn ΨnH

2 }}
− Tr{E{Ψn

1Vn∆hHn ΨnH
2 }} − Tr{E{Ψn

2 ∆hnVH
n ΨnH

1 }},
(20)

which constitutes the objective function of the proposed AS-
BMMSE-CE technique. Naturally, the estimated change of the
channel denoted by (19) may be inserted into (20), forming a
function of ωnl , l ∈ {0, . . . , Lc − 1}. Hence in AS-BMMSE-
CE, we are interested in finding the optimum values ωnl,opt, l ∈
{0, . . . , Lc − 1} that minimise Γn of (20)

ωnl,opt = argmin
{ωnl }∈N+

Γn, l ∈ {0, . . . , Lc − 1}, (21)

where N+ denotes the set of positive integers.
Nonetheless, as the complicated expression of (20) involves

multiple coupled parameters, it may be difficult to solve (21)
directly. It is therefore desirable to simplify (20), as to be
discussed next.

C. Pilot Pattern and Covariance Matrices

Aiming to simplify (20), let us first cast a deeper insight into
it. Note that Ψn

1 and Ψn
2 in (20) contain a common term of

WH
P WP , where WP is defined in (7). Since WP is related

to the pilot index, it is beneficial to optimise the pilot pattern
such that WH

P WP becomes a diagonal matrix, which then
facilitates the simplification of (20). On the other hand, as
suggested by [5], the pilots should be equally spaced in the
FD to achieve the best CE performance and to achieve the
minimal CRLB [6], [11].

Furthermore, recall that in O-OFDM-aided VLC systems,
the transmitted data symbols are Hermitian symmetric with
respect to the (N/2)th subcarrier. Thus, WP satisfies the
semi-orthogonality of

WH
P WP = NpILc , (22)

iff an uniform pilot interval of Nd is adopted and the pilot
subcarriers are symmetrically allocated with respect to the
(N/2)th subcarrier, too. In other words, the smallest pilot
index P0 should satisfy

P0+(
Np
2
−1)×Nd+Nd = N− [P0+(

Np
2
−1)×Nd], (23)
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where we have Np×Nd = N . With the aid of (23), we obtain

P0 = Nd/2. (24)

Based on (22) and (24), we may transform (20) to

Γn = Tr{E{εnεHn }} = Θ(fnωnl ,l,C
n
h), l = 0, . . . , Lc − 1,

(25)
where Θ(fnωl,l,C

n
h) is a function of fnωnl ,l and Cn

h.
More specifically, fnωnl ,l represents the lth diagonal element

of the diagonal covariance matrix E{∆ĥn∆ĥHn }, and can be
viewed as a function

fnωn
l
,l(r

d
n,l) =

σ2

Npωnl
+

1

(ωnl )2

ωnl −1∑
j=1

ωnl −1∑
k=1

r
|j−k|
n,l +

(ωnl − 1)2

(ωnl )2
r0n,l

− 2 ·
ωnl − 1

(ωnl )2

ωnl −1∑
j=1

rjn,l, l = 0, . . . , Lc − 1,

(26)
where d = |j − k|, {j, k} = 0, . . . , ωnl − 1 and we define

rdn,l = r
|j−k|
n,l = E{([hn−j ]l − [µnh]l)([hn−k]l − [µnh]l)

∗},
(27)

while rjn,l in (26) is obtained by setting k = 0 in (27). Note
that rdn,l of (27) are the elements of the UE position covariance
matrix Rn,l associated with the lth tap at the nth position,
where Rn,l is a real symmetric Toeplitz matrix formulated by

Rn,l =


r0n,l r1n,l . . . rωmax−1

n,l

r1n,l r0n,l . . . rωmax−2
n,l

...
...

. . .
...

rωmax−1
n,l rωmax−2

n,l . . . r0n,l

 . (28)

According to [12], the estimate of rdn,l can be expressed as

r̂dn,l =
1

ωmax

ωmax−d−1∑
j=0

([ĥn−jML ]l− [µ̄n]l)([ĥ
n−(j+d)
ML ]l− [µ̄n]l),

(29)
where ĥ

(·)
ML is given by (17), and [µ̄n]l is the mean of the

lth tap’s coefficients, which is averaged over the maximal
statistic window utilising MLE as µ̄n = 1

ωmax

∑ωmax−1
k=0 ĥn−kML .

Moreover, ωmax ≥ ωnl , l ∈ {0, . . . , Lc − 1} is the maximum
length of the statistic windows, and its value should be
carefully selected. If it is too large, the accuracy of r̂dn,l may
be biased by more distanced and thus less relevant channel
information. In contrast, if it is too small, the result of r̂dn,l
may be dominated by residual noise which is not effectively
mitigated due to insufficient historical channel information.

After obtaining µ̄n, we can use it to calculate (29) for
generating Rn,l defined in (28). Note that the MLE estimate,
namely ĥ

(·)
ML in (29), is contaminated by noise. The expectation

of r̂dn,l in (29) contains TD noise items of

E{r̂dn,l,noise} =

{
ωmax−1
ωmax

σ2
0 , d = 0

−ωmax−d
ωmax

· 1
ωmax

σ2
0 , d = 1, . . . , ωmax − 1

,

(30)
where σ2

0 = σ2

Np
is the TD residual noise variance under the

specific pilot pattern designed earlier in this section.

After replacing rdn,l in (26) with r̂dn,l in (29), we have
fnωnl ,l

(rdn,l) → f̂nωl,l(r̂
d
n,l). Utilising (30), we can therefore

obtain the expectation of the introduced noise item as

E{f̂nωn
l
,l,nosie(r̂dn,l)} = −

2(ωnl )2 − 3ωnl (ω2
max + 1) + 3ω2

max + 1

3(ωnl )2ω2
max

σ2
0 .

(31)
Then, in order to eliminate the impact from the noise specified
by (31), we may use

f̂nωnl ,l
′ = f̂nωnl ,l − E{f̂

n
ωnl ,l,nosie

} (32)

to replace fnωnl ,l in (25) and (26).
Next, we proceed to calculate Cn

h specified in (25). Assum-
ing that the changes of coefficients associated with different
channel taps, which are represented by the elements of ∆hn,
are uncorrelated [6], we have Cn

h = E{∆hn∆hHn } =
diag{σ2

n,0, . . . , σ
2
n,Lc−1}, where σ2

n,l (l = 0, . . . , Lc − 1)
denote the variance of [∆hn]l in (13) that corresponds to the
lth tap at the UE’s nth position. In order to obtain Cn

h, a
forgetting factor λ is exploited to calculate the estimate of
σ2
n,l, namely σ̂2

n,l. More explicitly, we define [13]

σ̄2
n,l = λσ̂2

n−1,l + (1− λ)(r̂0n,l −
ωmax − 1

ωmax
σ2
0). (33)

Noting that σ̂2
n,l should be a positive value, we may apply a

small covariance constant σ2
const to (33), resulting in

σ̂2
n,l =

{
σ̄2
n,l, σ̄2

n,l > 0

σ2
const, σ̄2

n,l ≤ 0
, (34)

which is the estimate of the lth diagonal element of Cn
h.

Based on (32) and (34), we therefore simplify the objective
function (20) to (25) and (26), which involve a number of Lc
target variables to be optimised, namely the statistic window
sizes ωnl , l = 0, . . . , Lc − 1.

D. Optimum VSW Size and MSE Bound

Recall that the optimum solution for the objective func-
tion Γn defined in (20) or (25) is given by (21), which is
an integer programming and thus a traditional NP-complete
problem [14]. Since there are a total number of ωmax candidate
window sizes for each of the Lc taps, the optimisation of (21)
results in a high computational complexity of O[(ωmax)Lc ].

Nonetheless, note that (25) may be reformulated as

Γ̂n =

Lc−1∑
l=0

{
Npσ2

(Np + σ2

σ̂2
n,l

)2
+

( σ2

σ̂2
n,l

)2f̂nωn
l
,l
′

(Np + σ2

σ̂2
n,l

)2
+

2σ2

ωnl

σ2

σ̂2
n,l

(Np + σ2

σ̂2
n,l

)2

}

=

Lc−1∑
l=0

M̂n
ωn
l
,l,

(35)
where we define

M̂n
ωn
l
,l =

Npσ
2

(Np + σ2

σ̂2
n,l

)2
+

( σ2

σ̂2
n,l

)2f̂nωn
l
,l
′

(Np + σ2

σ̂2
n,l

)2
+

2σ2

ωnl

σ2

σ̂2
n,l

(Np + σ2

σ̂2
n,l

)2
(36)

and σ̂2
n,l is given in (34). Note that the corresponding estimated

version of Γn and fnωl,l are used in (35).
Therefore, we can see that Γ̂n can be effectively decoupled

into independent items M̂n
ωnl ,l

, l ∈ {0, . . . , Lc−1}, which are
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associated with ωnl . Hence, with the aid of (36), we may solve
Γ̂n through exhaustively searching for each tap-specific ωnl,opt
in the candidate solution set of {1, . . . , ωmax}, yielding

ωnl,opt = argmin
ωnl ∈{1,...,ωmax}

M̂n
ωnl ,l

. (37)

In this case, the resultant complexity required by (21) can
be significantly reduced from O[(ωmax)Lc ] to O(ωmaxLc).
We summarise the proposed VSW optimisation algorithm
(VOA) in Algorithm 1. Based on the above discussions, the
complete description of the proposed AS-BMMSE-CE scheme
is provided by Algorithm 2.

Algorithm 1 VSW Optimisation Algorithm (VOA)
1: Initialisation: Set l = 0.
2: repeat
3: ωnl = 1
4: repeat
5: Calculate (32) and (36)
6: ωnl = ωnl + 1
7: until ωnl > ωmax

8: ωnl,opt = argminωn
l
∈{1,...,ωmax} M̂

n
ωn
l
,l

9: l = l + 1
10: until l > Lc − 1
11: Return: ωnl,opt, l = 0, . . . , Lc − 1 are the optimal VSW sizes.

Algorithm 2 The AS-BMMSE Algorithm

1: Initialisation: Obtain λ, ωmax and Lc. Set Ĉn
h =

diag( 1
Lc
, . . . , 1

Lc
), ĥkML = 0, k = 0,−1, . . . ,−ωmax + 2 and

n = 1.
2: repeat
3: Ĥ[n, k] = Ŷ [n,k]

X[n,k]
, k ∈ Ppilot

4: Calculate (8) and (29)
5: l = 0
6: repeat
7: Calculate (33) and (34)
8: l = l + 1
9: until l > Lc − 1

10: Execute Algorithm 1
11: l = 0
12: repeat
13: [µ̂nh]l = 1

ωn
l,opt

∑ωnl,opt−1

i=0 [ĥn−iML ]l

14: l = l + 1
15: until l > Lc − 1
16: Calculate (10)
17: Apply N -point FFT to get Ĥn

18: n = n+ 1
19: until n approaches a predefined maximal value.

As a further remark, after some derivations we can obtain

Mn
ωnl ,l
≤ σ2/Np

[1 + σ2/(σ2
n,lNp)]

2

[
1 + (

σ2

σ2
n,lNp

)2
1

ωnl
+ 2

σ2

σ2
n,lNp

]
(38)

and

Mn
ωnl ,l
≥ σ2/Np

[1 + σ2/(σ2
n,lNp)]

2

[
1+(

σ2

σ2
n,lNp

)2
1

ωnl
+

2

ωnl

σ2

σ2
n,lNp

]
(39)

as the upper and lower bounds of AS-BMMSE, respectively.
Note that the AS-BMMSE upper bound (ASB-UB) of (38) is
lower than the CRLB of [11], while the AS-BMMSE lower

bound (ASB-LB) of (39) is lower than the traditional Bayesian
lower bound (TBLB) of [6], [11], as demonstrated by our
numerical results in Section IV. This proves that the proposed
AS-BMMSE-CE scheme can achieve a better performance
than several existing conventional arrangements.

IV. NUMERICAL RESULTS AND ANALYSIS

In this section, simulation results are provided for demon-
strating the effectiveness of the proposed AS-BMMSE-CE
scheme. Assuming a general indoor scenario, a room model
with a size of 5 × 5 × 4m3 is adopted, where the maximal
reflection order of the VLC channel model [10] is set to
three, while the centre of the room is located at (0, 0).
Four rooftop LEDs, each assuming a fixed transmit power,
form a square-shaped coverage area for both illumination and
communication services. The UE employs a single photodiode
(PD) to receive the same signal transmitted from all LEDs and
moves around in the room. Naturally, the instantaneous CIR
established by [10] varies as soon as UE’s position changes.
The parameters in Table I apply to most scenarios tested in
this section, unless otherwise stated.

TABLE I
MAJOR PARAMETERS FOR SIMULATIONS.

Parameter Value
Reflection coefficient (wall/floor/ceiling) 0.8
DC bias 13dB
Sampling rate 500MHz
LED position (−1.5,−1.5, 4), (1.5, 1.5, 4),

(−1.5, 1.5, 4), (1.5,−1.5, 4)
Semi-half power angle 60◦
Field of view 85◦
Modulation scheme DCO-OFDM
Constellation diagram 16-QAM
Number of subcarriers, N 1024
Cycle prefix length, Ncp 64
Maximum tap delay 62ns
Smallest FD pilot subcarrier index 32
Route of UE’s movement (2.5, 2.5)→ (0,−2.5)
Distance from floor to UE 1.0m
Maximal statistic window size, ωmax 50
Forgetting factor, λ 0.6
σ2
const in (34) σ2/Np

In Fig. 2(a), we evaluate the theoretical MSE performance
of AS-BMMSE-CE using (20) with different sizes of the
statistic window for a single channel tap. For simplicity, σ2

is normalised to Np. Without loss of generality, we show
two example cases associated with two randomly selected UE
positions, namely the 6th and 8th taps at the positions of
(−1.6,−0.7) and (−1.0, 0.5), respectively. From the figure,
we can see that the achievable MSE performance of the
AS-BMMSE-CE scheme depends on the tap/position-specific
statistic window size ωnl , where there exists a different optimal
value for each case. Furthermore, we also plot the various
MSE performance bounds associated with the two cases,
respectively. It can be seen from Fig. 2(a) that both the ASB-
UB of (38) and the ASB-LB of (39) are lower than the
CRLB [6], [11], implying that AS-BMMSE-CE outperforms
MLE of [6] in terms of MSE performance. Moreover, our
scheme may also be capable of breaking the TBLB of [6]
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with the aid of an appropriately selected window size ωnl , as
observed for instance in the case of the 6th tap. Since there
are some correlations of some spacial taps between adjust
positions, if these correlations are strong, the MSE of proposed
method with appropriate VSW will be lower than TBLB.

Size of statistic window, ω
l

n

0 50 100 150 200

M
SE

10-3

10-2

10-1

100

Theoretical MSE Performance

CRLB
6th tap

8th tap

ASB-UB
Instaneous
TBLB
ASB-LB

(a) Theoretical MSE bounds.
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b
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0
 [dB]

20 25 30 35 40 45

M
SE
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10-3

10-2
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Fixed size = 10
Fixed size = 25
Fixed size = 50
Fixed size = 100
VSW

(b) Adaptive vs. fixed window sizes.

Fig. 2. The MSE performances of AS-BMMSE-CE exploiting fixed-
size window or VSW.

Next, for demonstrating the impact from the optimum
value of ωnl,opt indicated by (37), we investigate the MSE
performance of AS-BMMSE-CE under adaptive or fixed-size
statistic windows in Fig. 2(b). Under the adaptive option,
whenever the UE moves to a different position in the room, the
system calculates the optimal values ωnl,opt, l = 0, . . . , Lc− 1
based on (21), hence the so-called VSW mechanism. It can be
inferred from Fig. 2(b) that the VSW-aided scheme achieves
the lowest possible MSE, as compared with its counterparts
using a fixed-size statistic window.

In Fig. 3, we compare the MSE and BER performances
of AS-BMMSE-CE with selected existing CE schemes, such
as MLE [6], APLI [4], domain-transform least squares (DTL-
S) [7] and RLS [8]. The reference schemes were such con-
figured, that they fitted into the common system platform and
the channel model under comparable conditions. We can see
that our method has the best performances among the schemes
investigated. Moreover, it has only 0.5dB loss compared with
the benchmark with ideal CSI, as seen in Fig. 3(b).

As a final remark, the computational complexity of AS-
BMMSE-CE is relatively high. The number of complex ad-
ditions and complex multiplications required for one OFDM
symbol are Cadd = 28Lcωmax + Lcω

2
max + 2ωmax + 6Lc +

LcNp+ 1
3ω

3
max+N logN and Cmul = 27Lcωmax+2Lcω

2
max+

ωmax+6Lc+(2Lc+1)Np+ 1
2N logN , respectively. Reducing

its complexity constitutes part of our future work.

V. CONCLUSIONS

In this paper, a so-called AS-BMMSE-CE technique is
designed for indoor DCO-OFDM-VLC systems. The proposed
scheme is equipped with an efficient mechanism referred to
as VSW, which offers an accurate yet robust way for tracking
the instantaneous indoor optical channel. Through the VSW
function, the achievable channel MSE can be minimised, hence
becoming lower than the CRLB and sometimes even lower
than the TBLB, thanks to the historical channel information

E
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20 25 30 35 40 45

M
SE
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MSE of Selected CE Schemes
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DTLS
APLI
RLS
AS-BMMSE

(a) MSE performances.

E
b
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APLI
RLS
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(b) BER performances.

Fig. 3. The MSE and BER versus Eb/N0 performances of AS-
BMMSE-CE and other CE schemes.

collected in the statistic window with an adaptively optimised
size. Extensive theoretical and simulation results are provided
to demonstrate the benefits of the new CE method.

VI. ACKNOWLEDGEMENTS

The funding supports from the Science and Technolo-
gy Program Project (No. 2014B090901063) of Guangdong
Province, and the Innovation Team Project (No. 20150401)
of SYSU-CMU Shunde International Joint Research Institute,
are gratefully acknowledged.

REFERENCES

[1] J. M. Kahn and J. R. Barry, “Wireless infrared communications,”
Proceedings of the IEEE, vol. 85, no. 2, pp. 265–298, Feb. 1997.

[2] Y. Li, L. J. Cimini and N. R. Sollenberger, “Robust channel estima-
tion for OFDM systems with rapid dispersive fading channels,” IEEE
Transactions on Communications, vol. 46, no. 7, pp. 902–915, Jul. 1998.

[3] L. Hanzo, M. Münster, B. J. Choi and T. Keller, OFDM and MC-CDMA
for Broadband Multi-user Communications, WLANs and broadcasting.
Reading, Massachusetts: Wiley, 2003.

[4] M. Jiang, S. Huang and W. Wen, “Adaptive Polar-Linear Interpolation
Aided Channel Estimation for Wireless Communication Systems,” IEEE
Transactions on Wireless Communications, vol. 11, no. 3, pp. 920–926,
Mar. 2012.

[5] R. Negi and J. Cioff, “Pilot tone selection for channel estimation in a
mobile OFDM system,” IEEE Transactions on Consumer Electronics,
vol. 44, no. 3, pp. 1122–1128, Aug. 1998.

[6] M. Morelli and U. Mengali, “A Comparison of Pilot-Aided Channel
Estimation Methods for OFDM Systems,” IEEE Transactions on Signal
Processing, vol. 49, no. 12, pp. 3065–3073, Dec. 2001.

[7] M. Yu and P. Sadeghi, “A study of pilot-assisted OFDM channel esti-
mation methods with improvements for DVB-T2,” IEEE Transactions
on Vehicular Technology, vol. 61, no. 5, pp. 2400–2405, Jun. 2012.

[8] S. R. D. Paulo, Adaptive filtering: Algorithms and practical Implemen-
tation. Springer, 1997.

[9] J. Akhtman and L. Hanzo, “Decision directed channel estimation aided
OFDM employing sample-spaced and fractionally-spaced CIR estima-
tors,” IEEE Transactions on Wireless Communications, vol. 6, no. 4, pp.
1171–1175, Apr. 2007.

[10] B. C. Jeffrey and K. Prasanna, “Iterative Site-Based Modeling for
Wireless Infrared Channels,” IEEE Transaction on Antennas and Prop-
agation, vol. 50, no. 5, pp. 759–765, May 2002.

[11] M. K. Steven , Fundamentals of statistical signal processing - Estimation
theory. Prentice Hall PTR: University of Rhode Island, 1993.

[12] G. E. P. Box, G. M. Jenkins, G. C. Reinsel and G. M. Ljung, Time series
analysis: forecasting and control. John Wiley & Sons, 2015.

[13] Y. Zheng, “A novel channel estimation and tracking method for wireless
OFDM systems based on pilots and Kalman filtering,” IEEE Transac-
tions on Consumer Electronics, vol. 49, no. 2, pp. 275–283, Jan. 2003.

[14] A. Schrijver, Theory of linear and integer programming. John Wiley
& Sons, 1998.


